『電気・情報職 総まとめ講座 電磁気学・電気回路』(KU18243) 訂正表

2023年5月18日現在

ページ	訂正箇所		訂正内容	掲載日
P. 29	[No. 1] 解説 6 行目	誤	鏡像の導線による電界から受けるクーロン力は、	2023/5/18
		正	鏡像の導線による電界から受けるクーロンカ <mark>の大きさ</mark> は,	
P. 46	[No. 1] 問題文		[No. 1] 図のような無限に長い円柱の中心部分に電流Iが流れている。円柱	
		誤	の中心部と外周部の透磁率を μ_1 , μ_2 としたとき,発生する磁束密度	
			を求めよ。	
		正	[№. 1] 図のような無限に長い円柱の中心部分に電流1が流れている。 <mark>真空</mark>	
			の透磁率を μ_0 ,円柱の中心部と外周部の透磁率を μ_1 , μ_2 としたとき,	
			発生する磁束密度を求めよ。	
P. 58	説明文下から3行目	誤	この式 (e . 4) をヘルムホルツ方程式とよぶ。	2016/3/16
		正	この式 (e . 3) をヘルムホルツ方程式とよぶ。	
P. 87	[No. 1] 下から2行目の式	誤	$\frac{dP}{dR} = \frac{r - R}{\left(R + r\right)^3} = 0$	2016/3/16
		正	$\frac{dP}{dR} = \frac{r - R}{(R + r)^3} V^2 = 0$	

^{※「}掲載日」は、上掲訂正情報がLECホームページの『公務員 テキスト改訂・修正情報一覧』(http://www.lec-jp.com/koumuin/info/teisei/) に掲載された日付です。