『ハイレベル演習 経済理論 解説編』(KU23209)

訂正表

2023年6月19日現在

ページ	訂正箇所		訂正内容	023年6月19日現在 掲載日
p. 623	訂正箇所	誤	が成立する必要がある。また、 t 期の実質ベースの歳入歳出について、 $T_t + \frac{B_{t+1} - B_t}{B_t} + \frac{M_{t+1} - M_t}{P_t} = G_t + \frac{i B_t}{P_t}$ が常に成立する。上式の左辺は実質ベースの歳入を表し、右辺は実質 ベースの歳出 (財政支出と利払費) を表す。題意により基礎的財政収支 が均衡する予算 $(G_t = T_t)$ を組むことから、上式は単純化されて、 $\frac{B_{t+1} - B_t}{B_t} + \frac{M_{t+1} - M_t}{P_t} = \frac{i B_t}{P_t} \qquad \cdots ②$ となる。②の i について、題意より、フィッシャー方程式 $(i = r + \pi)$ を仮定するので、 $\frac{B_{t+1} - B_t}{B_t} + \frac{M_{t+1} - M_t}{P_t} = \frac{(r + \pi) B_t}{P_t}$ が成立する必要がある。また、 t 期の実質ベースの歳入歳出について、	2023/6/19
		正	$T_t + \frac{B_{t+1} - B_t}{P_t} + \frac{M_{t+1} - M_t}{P_t} = G_t + \frac{i B_t}{P_t}$ が常に成立する。上式の左辺は実質ベースの歳入を表し,右辺は実質ベースの歳出(財政支出と利払費)を表す。題意により基礎的財政収支 が均衡する予算($G_t = T_t$)を組むことから,上式は単純化されて, $\frac{B_{t+1} - B_t}{P_t} + \frac{M_{t+1} - M_t}{P_t} = \frac{i B_t}{P_t} \qquad \cdots ②$ となる。②の i について,題意より,フィッシャー方程式($i = r + \pi$)を仮定するので, $\frac{B_{t+1} - B_t}{P_t} + \frac{M_{t+1} - M_t}{P_t} = \frac{(r + \pi) B_t}{P_t}$	

^{※「}掲載日」は、上掲訂正情報がLECホームページの『公務員 テキスト改訂・修正情報―覧』(http://www.lec-jp.com/koumuin/info/teisei/)に 掲載された日付です。